Red Cabbage PH Indicator
Red Cabbage Detector – DIY Projects
August 15, 2018
Printed Circuit Board
How to make PCB using MARKER PEN (Printed Circuit Board)
August 25, 2018

How a CPU is Made

How a CPU is Made

How a CPU is Made

How a CPU Microprocessor Is Made

 

 

Computer chips, like desktop CPUs, are made from something rather technically unimpressive: sand. Both Intel’s Kaby Lake and AMD’s Ryzen chips are manufactured on a 14nm process node, which refers to the size of the chip’s transistors. The smaller the manufacturing process, the more transistors can fit on a single die. Microprocessors are one of the most complex products in the world, and creating these chips is a difficult and precise process. The steps we have outlined below are the most basic stages in the fabrication process, and many steps are repeated, altered, or omitted – depending on chip design. Below is an overview of how an Intel desktop processor is made, using images from Intel’s 22nm fabrication outline.

 

Start with sand

The process of creating a computer chip begins with a type of sand called silica sand, which is comprised of silicon dioxide. Silicon is the base material for semiconductor manufacturing and must be pure before it can be used in the manufacturing process.

 

Sand

Sand

 

Silicon ingot

Multiple purification and filtering processes are performed in order to deliver electronic-grade silicon, which has a purity of 99.9999%. A purified silicon ingot, which weighs around 100kg, is shaped from melted silica and made ready for the next step.

 

Silicon ingot

Silicon ingot

 

Cut wafers

The circular silicon ingot is sliced into wafers as thin as possible while maintaining the material’s ability to be used in the fabrication process. The silicon wafers are then refined and polished in order to provide the best possible surface for the following fabrication steps.

 

Cut wafers

Cut wafers

 

Photolithography

After being polished and readied for the process, a layer of photoresist is spread thinly across the wafer. This layer is then exposed to a UV light mask, which is shaped in the pattern of the microprocessor’s circuits. Exposed photoresist becomes soluble and is washed off by a solvent.

 

Photolithography

Photolithography

 

Ions and Doping

Exposed photoresist is washed off and the silicon wafer is bombarded with ions in order to alter its conductive properties – this is called doping. The remaining photoresist is then washed off, revealing a pattern of affected and unaffected material.

 

Ions and Doping

Ions and Doping

 

Etching

A pattern of hard material is applied to the wafer using another photolithography step. Chemicals are then used to remove unwanted silicon, leaving behind thin silicon ridges. After this, more photolithography steps are applied – which create more of the transistor structure, depending on which gate formation is being used.

 

Etching

Etching

 

Electroplating

An insulation layer is applied to the surface of the almost-complete transistor and three holes are etched into it. Next, manufacturers use a process called electroplating to deposit copper ions on the surface of the transistor, forming a layer of copper on top of the insulation. The excess copper is polished off, leaving only three copper deposits in the insulation layer holes.

 

Electroplating

Electroplating

 

Layering Interconnects

All the transistors are now connected in an architecture which allows the chip to function like a processor. The layering and design of these interconnects is incredibly complex, and there can be over 30 layers of metal connections in a single processor.

 

Layering Interconnects

Layering Interconnects

 

Test and Slice Die

The chips on the wafer are now ready to be tested. The wafer is sliced into dies, and functional dies move on to the final step in the fabrication process.

 

Test and Slice Die

Test and Slice Die

 

Packaging

Dies are packaged with a substrate and heat spreader, and assume the familiar form factor of a desktop processor. The heat spreader conducts heat away from the silicon and into the heatsink mounted on top of it. Processors are then tested for power efficiency, maximum frequency, and other performance metrics. Those that pass are then packaged as a retail product.

 

Packaging

Packaging

 

By: DIY Projects

YouTube Channel: DIY Projects

Sharing is caring!

Leave a Reply

Your email address will not be published. Required fields are marked *

shares